
Page 20 DATAFILE V27 N4

Stack Parameter Check
Bruce Horrocks, #609

In the last Datafile, my article ‘Stack Manipulation’ gave two routines that
simplified stack manipulation by allowing you either to swap items around in
groups or to save them out of the way for later use. Both programs required input
arguments to let them know how much of the stack to work on but neither did any
argument checking because, as I hinted at the time, doing so is a lot more
complicated than it really ought to be and stack checking often takes more code
than the program itself. This risks obscuring the purpose of the code, so what
would be useful is an RPL command that checks the type and number of arguments
and which can be simply and economically called at the start of any program.
Before launching into a solution, it is worth taking a quick tour through the
existing mechanisms for obtaining user provided input of a known type.
For checking arguments on the stack there are the commands TYPE and VTYPE and
for prompting for input there are the commands INFORM, INPUT, PROMPT,
PROMPTSTO and CHOOSE.

TYPE
&
VTYPE

Returns the data type of the top item on the stack. (VTYPE returns
the type of the data that is in the variable named on the top of the
stack). This is very efficient for a single argument of a single
type but becomes very inefficient when multiple arguments of
multiple types require checking. We will see more on this later.

INFORM Displays a form comprising one or more fields that the user fills
in. These fields can be forced to accept only specified data types
and the user is alerted at the time so they know exactly which
field is in error. The primary disadvantage is that it interrupts the
execution flow of the program – great for programs that require
dynamic input of data, not so great for library routines.

INPUT Prompts for data input into the command line. Access to the
stack is disabled but, otherwise, it is the normal command entry
method so the user is able to enter any data type. Pressing ENTER
terminates input and program execution continues.
The user’s input is returned to the program as a string which you
then have to do OBJ→ on and deal with any errors. There is an
option to have the input verified as being a valid object: this
ensures that OBJ→ will succeed but makes no restriction on the
number or type of objects that the user may have entered.
Typically for use only where the user knows what they are doing
and, as with INFORM, this command is of no use to us because it
interrupts the program execution.

DATAFILE V27 N4 Page 21

PROMPT Is similar to INPUT except that stack operations and calculations
are available. When the user executes CONT the program
continues with the stack as the user leaves it – there is no input
string to be parsed.

PROMPTSTO Takes a single argument – the name of a variable – which is
displayed to the user and then accepts input via the command
line. It then creates a global variable with the supplied name and
stores the user’s input in it.
A bit of an odd command because its operation is more like
INPUT than PROMPT but without the advantages.

CHOOSE Allows the user to choose from a list of items. Great, because it
means that only known data can be supplied, but limiting,
because the program has to supply that data in the first place. As
with the others, it interrupts program flow.

It should be clear then that, for checking parameters passed to subroutines, only
TYPE and VTYPE will be of any use. Whilst they are simple and easy to use, TYPE
and VTYPE require a lot of code when what is deemed valid input can be one of
several types. Consider the utterly trivial program « 1. + » which, even if only
‘numbers’ are allowed, has to check for type 0 (real number), type 1 (complex
number), type 10 (binary integer) and type 28 (real integer). More generically still,
any of these could be tagged (multiple times) and potentially stored in a variable
since the + command will happily accept all of these types of input.
Let’s have a go at an ‘add one to the value on the stack’ program that checks that it
has valid input and see what we get.

\<<
 @ Too few arguments?
 IF DEPTH 1 \<= THEN #201d DOERR END

 DUP
 DTAG @ Remove any tags that might be present

 @ If we have a variable then check its content
 IF DUP TYPE 6. == OVER TYPE 7. == OR
 THEN VTYPE ELSE TYPE END

 @ Only now can we check for valid types
 IF
 DUP 0. ==
 OVER 1. == OR
 OVER 10. == OR
 OVER 28. == OR
 THEN
 DROP @ Input is valid

Page 22 DATAFILE V27 N4

 ELSE
 DROP #202h DOERR @ Bad argument type
 END
 1. + @ Hooray! Finally, we can execute our program
\>>

It would be quicker and shorter to just do

\<< IFERR 1. + THEN #202h DOERR END \>>

and let the + command take the strain, so to speak. Unfortunately even this won’t
work because + also accepts strings, lists, matrices, vectors, algebraics and
numbers with units as inputs, which we don’t want in this case. In other words, the
list of exclusions is as long as the list of valid types.
In going through the above exercise, we have learnt some things about what our
solution should and shouldn’t do.

• There is no need to make it efficient for single arguments as TYPE can handle
this well enough.

• We want some sort of ‘lazy’ approach so tagged items and variables resolve
down to ‘what actually gets added’. But, equally, there needs to be a ‘strict’
approach – a way to specify that we should not resolve those types for the
occasions where the input must be a tagged item or must be a variable.

• Numbers with units attached should not be included in the lazy approach. (A
program that performs ‘multiply by one’ would be okay but is probably the
exception.)

• There’s no real need to allow for combinations e.g. input that must be a tagged
string, as this is so rare it is just as easy to invoke the test twice – once for a tag
and then, if successful, for a string.

• It should be straightforward to use the test more than once, in logical
combination

• Lastly, it is probably worth creating additional types that join two or more of the
TYPE types together for convenience. The most useful of these is likely to be
‘number’ to include both real numbers and real integers. Others could be: ‘two
element vector’ for both array vector and complex number; and ‘matrix’ for
normal and symbolic matrices (lists of lists).

We need to devise a convenient way of specifying the allowable items in each
stack level while taking these points into account. The obvious approach is to use
the TYPE numbers in a list, something like { p2 p3 … pn } where each pi represents
the parameter on level i of the stack to be checked and can be t | { t1 t2 t3… } where
t is one of the valid TYPE values, or a list of those valid types. So now a parameter
checked ‘plus 1’ program might look something like:

\<< IF { { 0. 1. 10. 28. } } PTYPE THEN 1. + END \>>

DATAFILE V27 N4 Page 23

where 'PTYPE' is the name we have chosen to give our program, analogously to
VTYPE.
For a single parameter this is just about bearable but consider the simple program

\<< + + \>>

which adds together the top three numbers on the stack. With parameter checking
this becomes:
\<< IF { { 0. 1. 10. 28. } { 0. 1. 10. 28. } { 0. 1. 10. 28. }

} PTYPE THEN + + END \>>

and we can see that things have rapidly become inelegant, if not unwieldy, already.
The solution is to ditch the TYPE numbers completely and use a string instead. If
we assign letters to represent the various types, then we can easily specify the
allowed types in a simple and compact notation. This also neatly solves the
problem of how to specify additional types such as ‘number’ meaning both real
number and real integer, as we can assign a single letter and worry about
interpreting it later. Using this approach, our ‘plus 1’ program becomes

\<< IF "n" PTYPE THEN 1. + END \>>

and our “add 3 numbers” program becomes
\<< IF "nnn" PTYPE THEN + + END \>>

This is starting to look a lot better. If we add an action indicator to the start of the
string to tell the program how to handle errors then it can be made even more
compact. For example if ‘X’ is defined as Exit on error meaning that PTYPE reports
any parameter errors to the user so that your code doesn’t have to, then the above
programs become

\<< "Xn" PTYPE 1. + \>> and \<< "Xnnn" PTYPE + + \>>
which are about as compact and neat as possible.
The action codes and letter combinations are:

Level 1 / Argument 1 Level 2 / Item 2 Level 1 / Item 1
"Xccc…" →
"Tccc…" → "Rrrr…" 0./1.

where
Code Meaning

X eXit mode.
Action code instructing PTYPE to abort and display an error message if any
parameter is incorrect. If all parameters are correct then the parameter
string is removed from the stack and PTYPE ends, allowing the calling
program to continue with a now-validated stack.

Page 24 DATAFILE V27 N4

Code Meaning
T Test mode

Action code informing PTYPE that it should leave a result code on the stack
upon completion for subsequent testing.
The result code in level 1 is a real number having the following values:

• 0. indicates that all the parameters were as expected; while

• 1. indicates that one or more parameters were incorrect.
If the test failed then level 2 is a string starting with the letter 'R' and
followed by a series of x’s and full stops, one per parameter being tested.
An 'x' indicates that the parameter in the corresponding position in the test
string failed while a full stop indicates that the parameter passed.
Example 1:

\<< 12.34 "TEST" "Tns" PTYPE \>>
 would result in a stack of:
 3: 12.34

 2: "TEST"

 1: 0.

Example 2:
\<< 12.34 "TEST" "Tnn" PTYPE \>>

 would result in a stack of:
 4: 12.34

 3: "TEST"

 2: "R.x"

 1: 1.
Note that PTYPE returns true if the test fails. This facilitates error handling
e.g. code similar to

\<< 1.2 "Tn" IF PTYPE THEN handle_error END
rest_of_program \>>

which avoids a large “else” clause containing the bulk of the program.
c Character code

A character indicating the type of object that is expected on the stack level
indicated by its position from the start of the string.

r Result code
A result character indicating whether the parameter in that position in the
string was of the required type or not. A full stop indicates that it was a
match, an ‘x’ indicates that it wasn’t.

DATAFILE V27 N4 Page 25

and the valid character codes are:

Character
Code

Object TYPE Code

- Any The parameter can be any object
n Number 0

28
Real number
Real integer

u Units 13 Number with units
c Complex number 1 Complex number
b Binary 10 Binary integer
a Array 3

4
29

Real array
Complex array
Symbolic vector/matrix

2 2-element Vector 1
3

29

Complex number
Array (of appropriate dimension)
Symbolic vector/matrix (of appropriate
dimension)

3 3-element Vector 3
29

Array (of appropriate dimension)
Symbolic vector/matrix (of appropriate
dimension)

l List 5 List
s String 2 Character string
v Variable 6

7
Global name
Local name

t Tagged object 12 Tagged object
p Program 8 Program
f Formula/Function 9 Algebraic
g Graphic 11 Graphics object

I’m sure you will have noticed that several codes are omitted. This is deliberate:

• the system objects with TYPE values from 20 upwards are ignored since most
userRPL programs will never encounter them

• the others I consider to be so rarely used on their own (and even more rarely
used in conjunction with other parameters on the stack) that it is not worth the

Page 26 DATAFILE V27 N4

overhead of providing for them. After all, PTYPE is intended to complement
TYPE, not replace it entirely.

Taking all of the above into account gives:

PTYPE
%%HP: T(3)A(R)F(.);
\<<
 @ PTYPE expects a string on the top of the stack
 @ indicating the types of values to expect on the rest
 @ of the stack. So check that:

 @ 1) there is at least one item
 IF DEPTH 2. < THEN #201h DOERR END @ Too few args

 @ 2) the first item is a string
 IF DUP TYPE 2. \=/ THEN DROP #202h DOERR END @ Bad arg type

 @ 3) there are at least as many values on the
 @ stack as there are characters in the string.
 IF DEPTH OVER SIZE > THEN #201h DOERR END

 @ Keep the stack as it is and simply write the test
 @ results over the top of the test string.
 @ So, stack usage at the start of the main loop is:
 @
 @ n: param n-1
 @ ...
 @ 3: param 2
 @ 2: param 1
 @ 1: string specifying the parameter types

 @ Go through the string and check each type against
 @ the value on the stack.
 @ (Start from char 2 as the first is special)
 2. OVER SIZE FOR a

 @ Get the a'th parameter
 a PICK

 @ Get its type
 DUP TYPE

 @ Get the a'th code character
 PICK3 a a SUB

 @ And save these three as local variables
 \-> p t c \<<

 @ If the parameter is tagged then remove the tag
 @ (unless the test is explicitly for a tagged value)
 IF t 12. == c "t" \=/ AND

DATAFILE V27 N4 Page 27

 THEN
 p DTAG 'p' STO
 p TYPE 't' STO
 END

 @ If the parameter is a variable then retrieve its
 @ contents
 @ (unless the test is explicitly for a variable)
 IF t 6. == t 7. == OR
 c "v" \=/ AND
 THEN
 p VTYPE 't' STO
 p RCL 'p' STO

 @ Do the tags test again (because a local var
 @ can hold a tagged value even though a
 @ global can't)
 IF t 12. == c "t" \=/ AND
 THEN
 p DTAG 'p' STO
 p TYPE 't' STO
 END

 END

 @ Finally, we get to the 'actual' tests. Each
 @ case statement test checks one of the character
 @ code types and leaves a true/false value on
 @ the stack.
 @ (The case order affects the speed of execution so
 @ they are ordered with the most common first)
 CASE
 c "n" == THEN @ Number
 t 0. == t 28. == OR
 END

 c "f" == THEN @ Formula/Function
 t 9. ==
 END

 c "a" == THEN @ Array
 t 3. == t 4. == t 29. == OR OR
 END

 c "l" == THEN @ List
 t 5. ==
 END

 c "s" == THEN @ String
 t 2. ==
 END

 c "c" == THEN @ Complex number

Page 28 DATAFILE V27 N4

 t 1. ==
 END

 c "b" == THEN @ Binary
 t 10. ==
 END

 c "p" == THEN @ Program
 t 8. ==
 END

 c "2" == THEN @ 2 element vector
 IF t 3. == t 29. == OR
 THEN
 p SIZE {2.} ==
 ELSE
 0.
 END
 t 1. == OR
 END

 c "3" == THEN @ 3 element vector
 IF t 3. == t 29. == OR
 THEN
 p SIZE {3.} ==
 ELSE
 0.
 END
 END

 c "u" == THEN @ Number with units
 t 13. ==
 END

 c "t" == THEN @ Tagged object
 t 12. ==
 END

 c "v" == THEN @ Variable
 t 6. == t 7. == OR
 END

 c "g" == THEN @ Graphic
 t 11. ==
 END

 c "-" == THEN @ Any type allowed
 1.
 END

 @ Default -> unknown/unexpected so error
 0.
 END

DATAFILE V27 N4 Page 29

 @ Update the result string with the outcome
 IF THEN "." ELSE "x" END
 a SWAP REPL

 \>>
 NEXT

 @ Report final error status - "x" marks the spot!
 DUP "x" POS
 IF OVER HEAD "T" ==
 THEN
 @ Turn POS value into 0. or 1.
 NOT NOT

 @ Start the result string with "R"
 SWAP 1. "R" REPL SWAP
 ELSE
 @ Report error
 NIP IF THEN #202h DOERR END
 END
\>>

HP50g Checksum: #A67Dh Bytes: 1278

RPL Stack Manipulation Revisited
So, to come full circle, here is a version of the program SWAPab from Datafile
V27N3p6 which checks its parameters using PTYPE. The additional code is
underlined.
<< "Xnn" PTYPE DUP2 + -> a b c << 1. b START c ROLLD NEXT >> >>

There, that wasn’t so bad!

