Annuities Galore on the HP-12C

Tony Hutchins, #1049

Example 1: 10 n 5 i $R/S \rightarrow 7.722$. RCL 1 $\rightarrow 39.374$... RCL 5 $\rightarrow 169.396$, six annuities in all. For j=0 to 3, R_j values the sequence t^j at time t, where t=1 to n. R₄ values (n-t+1) and R₅ t*(n-t+1). See below for more detail.

Keystrokes	Display		Keystrokes	Display		Keystrokes	Display
f P/R			+	32-	40	RCL	65-45 11
f CLEAR PRGM	00-		%T	33-	23	STO 0	66-44 0
RCLi	01-45	12	STO 5	34-44	5	ENTER	67- 36
g x =0	02-43	35	R↓	35-	33	X	68- 20
9 GTO 65	03-43,3	3 65	RCL 2	36-45	2	9 LSTx	69-43 36
RCL	04-45	11	X≥Y	37-	34	+	70- 40
1	05-	1	%	38-	25	2	71- 2
CHS	06-	16	+	39-	40	÷	72- 10
PMT	07 -	14	RCL	40-45	11	STO 1	73-44 1
CLx	08-	35	ENTER	41-	36	STO 3	74-44 3
9 END	09-43	8	X	42-	20	STO X3	75-44203
FV	10-	15	CHS	43-	16	STO 4	76-44 4
PV	11-	13	FV	44 -	15	RCL	77-45 11
STO 0	12-44	0	PV	45-	13	X	78- 20
_	13-	30	—	46-	30	RCL 1	79-45 1
% T	14-	23	%T	47 -	23	+	80- 40
STO 4	15-44	4	STO 2	48-44	2	RCL	81-45 11
R↓	16-	33	RCL 1	49-45	1	ENTER	82- 36
RCL	17-45	11	—	50-	30	+	83- 40
9 BEG	18-43	7	X≥Y	51-	34	1	84- 1
FV	19-	15	%	52-	25	+	85- 40
PV	20-	13	+	53-	40	3	86- 3
%T	21-	23	3	54-	3	÷	87- 10
STO 1	22-44	1	X	55-	20	RCL 1	88-45 1
ENTER	23-	36	RCL	56-45	11	X	89- 20
+	24-	40	9 LSTx	57-43	36	STO 2	90-44 2
STO 2	25-44	2	y^x	58-	21	—	91- 30
CHS	26-	16	FV	59-	15	STO 5	92-44 5
RCL	27-45	14	PV	60-	13	RCL 0	93-45 0
FV	28-	15	+	61-	40	9 GTO 00	94-43,33 00
PV	29-	13	%T	62-	23	f P/R	
RCL	30-45	11	STO 3	63-44	3		
X	31-	20	9 GTO 93	64-43,3	3 93		

The formulae are:

Annuity Type	i≪>0, v=1/(1+i)	i=0				
Level, of 1 in arrears	$R_0 = (1 - v^n)/i$	R ₀ =n				
Increasing, of 1,2,, n	$R_1 = ((1+i)R_0 - nv^n)/i$	$R_1 = n(n+1)/2$				
Increasing, of 1,4,, n ²	$R_2 = (2(1+i)R_1 - (1+i)R_0 - n^2v^n)/i$	$R_2 = R_1(2n+1)/3$				
Increasing, of 1,8,, n ³	$R_3 = (3(1+i)(R_2-R_1)+(1+i)R_0-n^3v^n)/i$	$R_3 = R_1^2$				
Decreasing, of n,n-1,,1	$R_4 = (n - R_0)/i$	$R_4 = R_1$				
Incr./Decr., of n,2(n-1),,n	$R_5 = (n(1+i)R_0 + nv^n - 2R_1)/i$	$R_5 = R_1(n+1) - R_2$				

The 12cp needs 8 extra lines. Each of the five FV PV sequences *needs* to be FV RJ PV PV. *Optionally*, x^2 can be used to replace the two ENTER X (lines 41/42 and 67/68). This changes line numbers so the GTO need attending to.

i% is kept in the upper stack so that the "/i" is simply accomplished using %T. For i<>0 the order of calculation is R_0 , R_4 , R_1 , R_5 , R_2 and R_3 at lines 12, 15, 22, 34, 48 and 63 respectively. For i=0 the order is: R_0 , R_1 , R_3 , R_4 , R_2 and R_5 . Next we tabulate the results for: $10 \ n$ 0 i R/S & $10 \ n$ R/S and calculate durations and demonstrate the little known but provable fact that the true equated time is very close to the arithmetic average of the approximate equated time (D_0) and the duration (D_1).

n=10	R ₀	R ₁	R ₂	R ₃	R ₄	R ₅
i%=0, V ₀	10	55	285	3025	55	220
$D_0 = R_{i+1}/R_i$	5.5	7	7.857	n/a	4	n/a
i%=10, V ₁	6.145	29.036	185.656	1380.636	38.554	133.739
$D_1 = R_{i+1}/R_i$	4.725	6.394	7.437	n/a	3.469	n/a
t _e *	5.110	6.702	7.652	8.230	3.727	5.222
$(D_0+D_1)/2$	5.113	6.697	7.647	n/a	3.735	n/a

*Equated time= $t_e = LN(V_0/V_1)/LN(1+i)$. $V_1 = V_0(1+i)^{-te}$. $V_1 \approx V_0(1+i)^{-D0}$

Suppose a firm pays every employee reaching 10 years service £1,000, and every year 10 employees do so. A £100,000 fund earning 10% would fund this forever. However the accountant suggests that only a 10 year liability needs be held, as otherwise the firm is reserving for future employees. Using the R_0 =6.145 from above, this would be £61,450. On second thoughts, using accrual accounting only the next year's £10,000 need be reserved in full, as it is fully accrued. We need only reserve for 9/10th of the following £10,000, etc. This is a decreasing annuity, and we can use R_4 =38.554, giving an accrued liability of only £38,554. If the firm decides to inflate the £1,000 by say 3% a year then all we need to do is use an interest rate of about 7%, or more precisely: 10[NIER]3-1[9] [LSTx]%+; \rightarrow 6.796[i] R/S] \rightarrow 7.090. RCL4 \rightarrow 42.815. Hence the accrued liability would increase to £42,815, an increase of 11.052%. The duration from above is D=3.469, so we'd expect a 10%-6.796%=3.204% reduction in yield to increase the value by 3.469*3.204%=11.115%, surprisingly close for a 3.2% (relatively large) change!