Annuities Galore on the HP-12C

Tony Hutchins, \#1049

Example 1: 10 n 5 i R/S \rightarrow 7.722. RCL $1 \rightarrow 39.374 \ldots$ RCL $5 \rightarrow$ 169.396, six annuities in all. For $j=0$ to $3, R_{j}$ values the sequence t^{j} at time t, where $t=1$ to n. R_{4} values ($n-t+1$) and $R_{5} t^{*}(n-t+1)$. See below for more detail.

Keystrokes	Display	Keystrokes	Display	Keystrokes	Display
f P/R		+	32- 40	RCL n	65-45 11
f CLEAR PRGM	00-	\%T	33-23	STO 0	66-44 0
RCL i	01-45 12	STO 5	34-44 5	ENTER	67-36
$9 \mathrm{x}=0$	02-43 35	R \downarrow	35-33	X	68- 20
g GTO65	03-43,33 65	RCL 2	36-45 2	g LSTX	69-43 36
RCL n	04-45 11	$x \geqslant y$	37- 34	+	70- 40
1	05-1	\%	38- 25	2	71- 2
CHS	06-16	+	39-40	\div	72- 10
PMT	07-14	RCL n	40-45 11	STO 1	73-44 1
CLX	08-35	ENTER	41- 36	STO 3	74-44 3
9 END	09-43 8	X	42- 20	STO X 3	75-4420 3
FV	10-15	CHS	43-16	STO 4	76-44 4
PV	11- 13	FV	44-15	RCL n	77-45 11
STO 0	12-44 0	PV	45-13	X	78- 20
-	13-30	-	46-30	RCL1	79-45 1
\% T	14- 23	\%T	47-23	+	80-40
STO 4	15-44 4	STO2	48-44 2	RCL n	81-45 11
R】	16-33	RCL1	49-45 1	ENTER	82-36
RCL n	17-45 11	-	50-30	$+$	83-40
g BEG	18-43 7	$x \geqslant y$	51- 34	1	84-1
FV	19-15	\%	52- 25	+	85- 40
PV	20-13	+	53-40	3	86-3
\%T	21- 23	3	54- 3	\div	87-10
STO 1	22-44 1	X	55- 20	RCL1	88-45 1
ENTER	23-36	RCL n	56-45 11	X	89- 20
+	24-40	g LSTX	57-43 36	STO2	90-44 2
STO2	25-44 2	y^{x}	58- 21	-	91-30
CHS	26-16	FV	59-15	STO 5	92-44 5
RCL PMT	27-45 14	PV	60-13	RCL 0	93-45 0
FV	28-15	+	61- 40	g GTO 00	94-43,33 00
PV	29-13	\%T	62- 23	f P/R	
RCL n	30-45 11	STO 3	63-44 3		
X	31- 20	g GTO 93	64-43,33 93		

The formulae are:

Annuity Type	$\mathbf{i}<>\mathbf{0}, \mathbf{v}=\mathbf{1} /(\mathbf{1 + i})$	$\mathbf{i}=\mathbf{0}$
Level, of 1 in arrears	$\mathrm{R}_{0}=\left(1-\mathrm{v}^{\mathrm{n}}\right) / \mathrm{i}$	$\mathrm{R}_{0}=\mathrm{n}$
Increasing, of $1,2, \ldots, \mathrm{n}$	$\mathrm{R}_{1}=\left((1+\mathrm{i}) \mathrm{R}_{0}-\mathrm{nv}^{\mathrm{n}}\right) / \mathrm{i}$	$\mathrm{R}_{1}=\mathrm{n}(\mathrm{n}+1) / 2$
Increasing, of $1,4, \ldots, \mathrm{n}^{2}$	$\mathrm{R}_{2}=\left(2(1+\mathrm{i}) \mathrm{R}_{1}-(1+\mathrm{i}) \mathrm{R}_{0}-\mathrm{n}^{2} \mathrm{v}^{\mathrm{n}}\right) / \mathrm{i}$	$\mathrm{R}_{2}=\mathrm{R}_{1}(2 \mathrm{n}+1) / 3$
Increasing, of $1,8, \ldots, \mathrm{n}^{3}$	$\mathrm{R}_{3}=\left(3(1+\mathrm{i})\left(\mathrm{R}_{2}-\mathrm{R}_{1}\right)+(1+\mathrm{i}) \mathrm{R}_{0}-\mathrm{n}^{3} \mathrm{v}^{\mathrm{n}}\right) / \mathrm{i}$	$\mathrm{R}_{3}=\mathrm{R}_{1}{ }^{2}$
Decreasing, of $\mathrm{n}, \mathrm{n}-1, \ldots, 1$	$\mathrm{R}_{4}=\left(\mathrm{n}-\mathrm{R}_{0}\right) / \mathrm{i}$	$\mathrm{R}_{4}=\mathrm{R}_{1}$
Incr./Decr., of $\mathrm{n}, 2(\mathrm{n}-1), \ldots, \mathrm{n}$	$\mathrm{R}_{5}=\left(\mathrm{n}(1+\mathrm{i}) \mathrm{R}_{0}+\mathrm{nv}^{\mathrm{n}}-2 \mathrm{R}_{1}\right) / \mathrm{i}$	$\mathrm{R}_{5}=\mathrm{R}_{1}(\mathrm{n}+1)-\mathrm{R}_{2}$

The 12cp needs 8 extra lines. Each of the five FV PV sequences needs to be FV RD PV PV. Optionally, x^{2} can be used to replace the two ENTER X (lines 41/42 and $67 / 68$). This changes line numbers so the GTO need attending to.
$\mathrm{i} \%$ is kept in the upper stack so that the "/i" is simply accomplished using \%T. For $\mathrm{i}<>0$ the order of calculation is $\mathrm{R}_{0}, \mathrm{R}_{4}, \mathrm{R}_{1}, \mathrm{R}_{5}, \mathrm{R}_{2}$ and R_{3} at lines $12,15,22,34,48$ and 63 respectively. For $i=0$ the order is: $R_{0}, R_{1}, R_{3}, R_{4}, R_{2}$ and R_{5}. Next we tabulate the results for: $10 \square 0 \quad R / S \& 10 \cap R / S$ and calculate durations and demonstrate the little known but provable fact that the true equated time is very close to the arithmetic average of the approximate equated time $\left(D_{0}\right)$ and the duration $\left(\mathrm{D}_{1}\right)$.

$\mathrm{n}=10$	R_{0}	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}
$\mathrm{i} \%=0, \mathrm{~V}_{0}$	10	55	285	3025	55	220
$\mathrm{D}_{0}=\mathrm{R}_{\mathrm{i}+1} / \mathrm{R}_{\mathrm{i}}$	5.5	7	7.857	n / a	4	n / a
$\mathrm{i} \%=10, \mathrm{~V}_{1}$	6.145	29.036	185.656	1380.636	38.554	133.739
$\mathrm{D}_{1}=\mathrm{R}_{\mathrm{i}+1} / \mathrm{R}_{\mathrm{i}}$	4.725	6.394	7.437	n / a	3.469	n / a
$\mathrm{t}_{\mathrm{e}} *$	5.110	6.702	7.652	8.230	3.727	5.222
$\left(\mathrm{D}_{0}+\mathrm{D}_{1}\right) / 2$	5.113	6.697	7.647	n / a	3.735	n / a

*Equated time $=\mathrm{t}_{\mathrm{e}}=\mathrm{LN}\left(\mathrm{V}_{0} / \mathrm{V}_{1}\right) / \mathrm{LN}(1+\mathrm{i}) . \mathrm{V}_{1}=\mathrm{V}_{0}(1+\mathrm{i})^{-\mathrm{te}} . \mathrm{V}_{1} \approx \mathrm{~V}_{0}(1+\mathrm{i})^{-\mathrm{D} 0}$
Suppose a firm pays every employee reaching 10 years service $£ 1,000$, and every year 10 employees do so. A $£ 100,000$ fund earning 10% would fund this forever. However the accountant suggests that only a 10 year liability needs be held, as otherwise the firm is reserving for future employees. Using the $\mathrm{R}_{0}=6.145$ from above, this would be $£ 61,450$. On second thoughts, using accrual accounting only the next year's $£ 10,000$ need be reserved in full, as it is fully accrued. We need only reserve for $9 / 10$ th of the following $£ 10,000$, etc. This is a decreasing annuity, and we can use $\mathrm{R}_{4}=38.554$, giving an accrued liability of only $£ 38,554$. If the firm decides to inflate the $£ 1,000$ by say 3% a year then all we need to do is use an interest rate of about 7%, or more precisely: 10 ENTER 3 $-1 \square$ LSTX $\% \rightarrow \div \rightarrow$ $6.796 \mathrm{R} / \mathrm{S} \rightarrow 7.090$. RCL $4 \rightarrow 42.815$. Hence the accrued liability would increase to $£ 42,815$, an increase of 11.052%. The duration from above is $\mathrm{D}=3.469$, so we'd expect a $10 \%-6.796 \%=3.204 \%$ reduction in yield to increase the value by $3.469 * 3.204 \%=11.115 \%$, surprisingly close for a 3.2% (relatively large) change!

