Bond Duration \& Convexity on the HP-12C

Tony Hutchins, \#1049
Example 1: 10 annual coupons. 5\% yield. 4\% coupon. 10 years to maturity. $10 \rightarrow 5 \mathrm{i} 4$ PMT 0 STO 0 R/S $\rightarrow 7.9615135$ (duration) $\mathrm{x} \geqslant \mathrm{y} \rightarrow 78.29424$ (convexity).

Keystrokes	Display	Keystrokes	Display	Keystrokes	Display
f P/R		X	20- 20	-	41- 30
f clear PRGM	00-	RCL FV	21-45 15	g LSTX	42-43 36
RCL i	01-45 12	-	22-30	\times	43- 20
RCL i	02-45 12	RCL n	23-45 11	-	44-30
RCL PMT	03-45 14	X	24- 20	STO 2	45-44 2
-	04-30	FV	25-15	RCL1	46-45 1
RCL n	05-45 11	PV	26-13	+	47-40
X	06-20	-	27-30	EEX	48- 26
9 BEG	07-43 7	\%T	28- 23	RCL i	49-45 12
FV	08-15	EEX	29-26	\%	50- 25
PV	09-13	2	30- 2	+	51- 40
\%T	10- 23	9 END	31-43 8	\div	52-10
STO1	11-44 1	FV	32-15	g LSTx	53-43 36
2	12- 2	PV	33-13	\div	54-10
RCL i	13-45 12	STO $\div 1$	34-4410 1	RCL 1	55-45 1
\%	14- 25	\div	35-10	g LSTX	56-43 36
+	15-40	RCL 1	36-45 1	\div	57-10
X	16-20	ENTER	37-36	g GTO 00	58-43,33 00
g LSTx	17-43 36	+	38-40	f P/R	
EEX	18- 26	RCL 0	39-45 0	12c platinum needs 6 extra steps	
2	19- 2	STO - 1	40-4430 1		

	R_{0}	n	i	PV	PMT	FV
Input	$\mathrm{f}=$ accrual	\#coupons	yield\%	n / a	coupon\%	n / a
Output	unchanged	unchanged	unchanged	-price	unchanged	100

i and PMT are per coupon period.

Register Usage	Calculation	Lines	Calculation	Lines	
$\mathrm{R}_{0}=\mathrm{f}$	$\mathrm{R}_{1}=\mathrm{Df}$	$\mathrm{R}_{2}=\mathrm{Cf}$	D and C	$1-35$	$\mathrm{Df}=\mathrm{D}-\mathrm{f}$
output	eDf		$\mathrm{Cf}=\mathrm{C}-\mathrm{f} \cdot(2 \cdot \mathrm{D}-\mathrm{f})$	$36-45$	$1+\mathrm{i}$
output Y	eCf		$\mathrm{eCf}=(\mathrm{Cf}+\mathrm{Df}) /(1+\mathrm{i})^{2}$	$46-56$	$\mathrm{eDf}=\mathrm{Df} /(1+\mathrm{i})$

Df \& eDf are in coupon periods. Cf \& eCf are in (coupon periods) ${ }^{2}$.
The first 35 steps do the tricky work. The rest can almost be done manually. Each time is weighted by the present value of the bond cashflow at that time, divided by the price. The weights add to $1 . \mathrm{D}$ is then just the weighted mean time (first moment of time, statistically). If the dirty price is calculated using compound
interest and the pricing point is shifted forward by f then D becomes $D f=D-f . C$ is the weighted mean time-squared (second moment of time, statistically). The financial markets quote the numbers eDf and eCf as shown in the previous table, because they are used to determine sensitivity in price with respect to a change in i , the effective yield per period. If the continuous yield were used instead then Df and Cf would suffice. These solver formulae use the "PV" function only available in the 200LX and 19B and 19BII. They show the 3 PVs as calculated by the 12C program, in lines 9, 26 and 33 . $\mathrm{g} \%$ is the coupon $\%$ stored in PMT.

$$
\begin{aligned}
& \{\mathrm{D}=\mathrm{PV}(\mathrm{n}, \mathrm{i} \%, \mathrm{~g} \%, \mathrm{n} *(\mathrm{i} \%-\mathrm{g} \%), 1,1) / \mathrm{PV}(\mathrm{n}, \mathrm{i} \%, \mathrm{~g} \%, 100,1,0) / \mathrm{i} \% * 100\} \\
& \left\{\mathrm{C}=\left(\mathrm{PV}(\mathrm{n}, \mathrm{i} \%, \mathrm{~g} \%, \mathrm{n} *(\mathrm{i} \%-\mathrm{g} \%), 1,1)^{*}(200 / \mathrm{i} \%+2)\right.\right. \\
& -\mathrm{PV}(\mathrm{n}, \mathrm{i} \%, \mathrm{~g} \%, \mathrm{n} *((200+2 * \mathrm{i} \%)-\mathrm{n} *(\mathrm{i} \%-\mathrm{g} \%)), 1,1)) \\
& / \mathrm{PV}(\mathrm{n}, \mathrm{i} \%, \mathrm{~g} \%, 100,1,0) / \mathrm{i} \% * 100\}
\end{aligned}
$$

These closed formulae can also be calculated using summation loops (see the formulae later for a_{n}, a1 and a2), but on the 12 C this takes more code and execution time then depends on n, but then the program does work for $\mathrm{i}=0$, where $\mathrm{D}=\mathrm{n}(1+\mathrm{g}(\mathrm{n}+1) / 2) /(1+\mathrm{g} \cdot \mathrm{n})$ and $\mathrm{C}=\mathrm{n}^{2}(1+\mathrm{g}(\mathrm{n}+1)(2 \mathrm{n}+1) / 6 / \mathrm{n}) /(1+\mathrm{g} \cdot \mathrm{n})$. Here $\mathrm{i} \%$ less than 0.01% is not recommended. Note how we change payment mode within the program (lines 7 and 31) - a very useful feature, peculiar to the 12 C . The 38C requires a little extra code. The program can relatively easily be extended to use a face value of other than 100.
Example 2: Taken from page 77 of the HP-12C Owner's Handbook ("manual"). 29 semi-annual coupons. 8.25% yield. 6.75% coupon. Accrual $=145 / 182$.
29 n 8.25 ENTER $2 \div \mathrm{i} 6.75$ ENTER $2 \div$ PMT 145 ENTER $182 \div$ STO $0 \mathrm{R} / \mathrm{S} \rightarrow 16.6875$ $2 \div \rightarrow 8.342873$. $\mathrm{X} \geqslant \mathrm{y} 44 \rightarrow 98.18111$. Set 'C' with STO EEX. RCL $\quad \mathrm{C}$ CLx PMT $\mathrm{FV} \rightarrow 90.31067$ (correct dirty price from the manual).

This one just does D. It uses no storage registers and preserves 2 input stack levels. $10 \mathrm{n} 54 \mathrm{PMT} \mathrm{R} / \mathrm{S} \rightarrow 8.3595892(\mathrm{D})$. Then $1.05 \square \rightarrow 7.9615135(\mathrm{eD})$

Keystrokes	Display	Keystrokes	Display	Keystrokes	Display
f P/R		FV	07-15	PV	15-13
f CLEAR PRGM	0-	PV	08-13	\div	16-10
RCL i	01-45 12	EEX	09- 26	RCL i	17-45 12
RCL PMT	02-45 14	2	10- 2	\div	18-10
-	03-30	\times	11- 20	g GTO 00	19-43,33 00
RCL n	04-45 11	g LSTx	12-43 36	f P/R	
X	05- 20	g END	13-43 8	12c platinum needs 4 extra steps	
g BEG	06-43 7	FV	14-15		

The following program is useful for finding the accrual given the settlement date (SETT), the last and next coupon dates (LCD and NCD). NCDENTER SETTENTER LCD 9 GTO 65 R/S puts the actual/actual accrual fraction in R_{0}, and g GT0 59 R/S does the $30 / 360$ accrual. E.g., for this example: g M.DY 6.041982 ENTER
4.281982 ENTER 12.041981 GTO $65 \mathrm{R} / \mathrm{S} \rightarrow 0.70670$. Note that $R_{3}-R_{6}$ are available for storing dates, if necessary.

Keystrokes	Display	Keystrokes	Display	Keystrokes	Display
g \triangle DYS	59-43 26	g \triangle DYS	65-43 26	X2y	71- 34
R \downarrow	60-33	X 2 y	66-34	R \downarrow	72- 33
$x \geqslant y$	61- 34	R \downarrow	67-33	\div	73-10
g LSTX	62-43 36	X 2 y	68- 34	STO 0	74-44 0
g \triangle DYS	63-43 26	g LSTx	69-43 36	g GTO 00	75-43,33 00
g GTO 72	64-43,33 72	g \triangle DYS	70-43 26		

The next program interfaces directly with the built-in bond program to produce the duration and convexity of a bond. From page 77 of the manual: 8.25 i 6.75 PMT g M.DY 4.281982 ENTER $6.041996 \rightarrow f$ PRICE then g GTO 76 R/S $\rightarrow 16.6875$, as above. Note how the program first stores 1-n in R_{0}. This is possible because the built-in bond programs (i.e. f PRICE or f YTM) leave 1-f in n, an undocumented feature, till now $<\mathrm{G}>$. They also leave $100+\mathrm{CPN} / 2$ in FV which is also used here. The PV is the clean price, essential here where we are calculating n. The n is calculated using payment mode END and the 12 C rounds this up so we automatically get the total number of coupons. Quite useful!

Keystrokes	Display		Keystrokes		Display		Keystrokes		Display	
EEX	76-	26	i		83-	12	\div		90-	10
RCL n	77-45	11	RCL	PV	84-45	13	PM		91-	14
-	78-	30	CHS		85-	16	-		92-	30
STO 0	79-44	0	PV		86-	13	FV		93-	15
RCL i	80-45	12	RCL	FV	87-45	15	g	END	94-43	8
2	81-	2	RCL	PMT	88-45	14	n		95-	11
\div	82-	10	2		89-	2	9	GTO01	96-43,	3301

After running the above program the original bond can easily be manipulated using the built-in TVM itself. For example, if it were a German Moosmüller bond where simple interest is used in the odd period, what would its price be? We need to set BEG mode, put a coupon back with $F V(R C L$ FV RCL PMT \rightarrow FV $)$, use n-f instead of $n(R C L \square R C L 0 \square)$ and clear 'C' with STO EEX, then PV $\rightarrow-90.29863$, the new dirty price - with ' $\mathrm{C}^{\prime}, \mathrm{PV} \rightarrow-90.31067$, as before. We can now also solve for i if we wish. At this moment in time $<\mathrm{G}>$ we seem to have replaced the built-in bond programs :-) We can even do an ex-div valuation on this bond - skip the next coupon by simply doing g END 100 FV PV. The accrued interest is now $\mathrm{f} \cdot \mathrm{PMT}-\mathrm{PMT}$, not the usual f•PMT. In DataFile V22N1P32 I wrote there is no accrued interest for the ex-div case. It's negative. Also I see on P31 I have an 8.343873 which should be 8.342873 . Finally, a challenge: Let $v=1 /(1+i)$, $a_{n}=v+v^{2}+v^{3}+\ldots+v^{n}=\left(1-v^{n}\right) / i, a 1=v+2 v^{2}+3 v^{3}+\ldots+n \cdot v^{n} \& a 2=v+4 v^{2}+9 v^{3}+\ldots+n^{2} v^{n}$, then given $\mathrm{PV}+\mathrm{PMT} \cdot \mathrm{a}_{\mathrm{n}}+\mathrm{FV} \cdot \mathrm{v}^{\mathrm{n}}=0\left(\right.$ END mode), $\mathrm{PV}+\mathrm{PMT} \cdot(1+\mathrm{i}) \cdot \mathrm{a}_{\mathrm{n}}+\mathrm{FV} \cdot \mathrm{v}^{\mathrm{n}}=0$ (BEG mode), $\mathrm{P}=\mathrm{g} \cdot \mathrm{a}_{\mathrm{n}}+\mathrm{v}^{\mathrm{n}}, \mathrm{D}=\left(\mathrm{g} \cdot \mathrm{a} 1+\mathrm{n} \cdot \mathrm{v}^{\mathrm{n}}\right) / \mathrm{P}, \& \mathrm{C}=\left(\mathrm{g} \cdot \mathrm{a} 2+\mathrm{n}^{2} \mathrm{v}^{\mathrm{n}}\right) / \mathrm{P}$, derive the formulae used here :-) Hint1: first show that $\mathrm{a} 1=\left(\mathrm{a}_{\mathrm{n}} \cdot(1+\mathrm{i})-\mathrm{n} \cdot \mathrm{v}^{\mathrm{n}}\right) / \mathrm{i}$ and $\mathrm{a} 2=\left(2 \cdot(1+\mathrm{i}) \cdot \mathrm{a} 1-\mathrm{a}_{\mathrm{n}} \cdot(1+\mathrm{i})-\mathrm{n}^{2} \mathrm{v}^{\mathrm{n}}\right) / \mathrm{i}$. Hint 2: $v \cdot a 1=v^{2}+2 v^{3}+3 v^{4}+\ldots+n \cdot v^{n+1}$, so $a 1-v \cdot a l=a l \cdot(1-v)=a 1 \cdot i /(1+i)=v+v^{2}+v^{3}+\ldots+v^{n}$
$-n \cdot v^{n+1}=a_{n}-n \cdot v^{n+1}$. There is still plenty of manipulation required to get the formula for C as used here.
There is a third way, albeit more approximate, to get eDf and eCf directly. Before going on to that, I should point out that statistically the standard deviation, s , of the bond payment times is just the square root of the variance, $\mathrm{s}^{2}=\mathrm{C}-\mathrm{D}^{2}$. This number is independent of " f ", it is just a property of the bond payments stream, and the yield, but not when it is actually valued. One can even put $\mathrm{f}=\mathrm{D}$ itself and s is unchanged, but $\mathrm{Df}=0$. So, $\mathrm{s}^{2}=C-D^{2}=C f-\mathrm{Df}^{2}$. For a normal bond $\mathrm{C}>=\mathrm{D}^{2}$ and s is real. For the next method I drop the " f " notation and derive eD and eC. To get back to the statistical D and $\mathrm{C}: \mathrm{D}=\mathrm{eD} \cdot(1+\mathrm{i})$ and $\mathrm{C}=\mathrm{eC} \cdot(1+\mathrm{i})^{2}-\mathrm{D} . \mathrm{eD}$ is sometimes called the "modified duration" or "volatility".

By Taylor Expansion...

$\mathrm{P}(\mathrm{i}+\Delta \mathrm{i})=\mathrm{P}(\mathrm{i})+\Delta \mathrm{i} \cdot(\mathrm{dP} / \mathrm{di})+(\Delta \mathrm{i})^{2} / 2 \cdot\left(\mathrm{~d}^{2} \mathrm{P} / \mathrm{di}^{2}\right)+(\Delta \mathrm{i})^{3} / 6 \cdot\left(\mathrm{~d}^{3} \mathrm{P} / \mathrm{di}^{3}\right)+(\Delta \mathrm{i})^{4} / 24 \cdot\left(\mathrm{~d}^{4} \mathrm{P} / \mathrm{di}^{4}\right)+\ldots$
Let $\Delta \mathrm{P}=\mathrm{P}(\mathrm{i}+\Delta \mathrm{i})-\mathrm{P}(\mathrm{i})$, and $\mathrm{P}=\mathrm{P}(\mathrm{i})$, then
$\Delta \mathrm{P} / \mathrm{P}=\Delta \mathrm{i} \cdot(\mathrm{dP} / \mathrm{di}) / \mathrm{P}+(\Delta \mathrm{i})^{2} / 2 \cdot\left(\mathrm{~d}^{2} \mathrm{P} / \mathrm{di}^{2}\right) / \mathrm{P}+(\Delta \mathrm{i})^{3} / 6 \cdot\left(\mathrm{~d}^{3} \mathrm{P} / \mathrm{di}^{3}\right) / \mathrm{P}+(\Delta \mathrm{i})^{4} / 24 \cdot\left(\mathrm{~d}^{4} \mathrm{P} / \mathrm{di}^{4}\right) / \mathrm{P}+\ldots$
$=-\Delta \mathrm{i} \cdot \mathrm{eD}+(\Delta \mathrm{i})^{2} / 2 \cdot \mathrm{eC}-(\Delta \mathrm{i})^{3} / 6 \cdot \mathrm{~B}+(\Delta \mathrm{i})^{4} / 24 \cdot \mathrm{~A}+\ldots$
$e D=-(d P / d i) / P$, and $e C=\left(d^{2} P / d^{2}\right) / P$, are the same as the eDf and eCf used earlier. In fact the approximate eD as derived below is often called the "effective" duration.
$\mathrm{B}=-\left(\mathrm{d}^{3} \mathrm{P} / \mathrm{di}^{3}\right) / \mathrm{P} \& \mathrm{~A}=\left(\mathrm{d}^{4} \mathrm{P} / \mathrm{di}^{4}\right) / \mathrm{P}$, are the Butterfly and the Ant, which have tiny effects on $\Delta \mathrm{P} / \mathrm{P}$. Consider two $\Delta \mathrm{P} / \mathrm{P}$ denoted CH 1 and CH 2 caused by $\Delta \mathrm{i}=+\mathrm{h}$ and $\Delta \mathrm{i}=-\mathrm{h}$. Then $\mathrm{CH}=-\mathrm{eD} \cdot \mathrm{h}+\mathrm{eC} / 2 \cdot \mathrm{~h}^{2}-\mathrm{B} / 6 \cdot \mathrm{~h}^{3}+\mathrm{A} / 24 \cdot \mathrm{~h}^{4}+\ldots, \& \mathrm{CH} 2=\mathrm{eD} \cdot \mathrm{h}+\mathrm{eC} / 2 \cdot \mathrm{~h}^{2}+\mathrm{B} / 6 \cdot \mathrm{~h}^{3}+\mathrm{A} / 24 \cdot \mathrm{~h}^{4}+\ldots$ $\mathrm{CH} 2-\mathrm{CH} 1=2 \cdot \mathrm{eD} \cdot \mathrm{h}+\mathrm{B} / 3 \cdot \mathrm{~h}^{3}+. ., \& \mathrm{CH} 1+\mathrm{CH} 2=\mathrm{eC} \cdot \mathrm{h}^{2}+\mathrm{A} / 12 \cdot \mathrm{~h}^{4}+\ldots$
Hence if we ignore A and B and higher terms we can calculate $\mathrm{P}(\mathrm{i}), \mathrm{P}(\mathrm{i}+\mathrm{h})$ and $\mathrm{P}(\mathrm{i}-\mathrm{h})$ and then find $\mathrm{eD} \cong(\mathrm{CH} 2-\mathrm{CH} 1) / 2 \mathrm{~h}$ \& $\mathrm{eC} \cong(\mathrm{CH} 1+\mathrm{CH} 2) / \mathrm{h}^{2}$. The markets use $\mathrm{h}=.01 \%=.0001=1 \mathrm{BP}=1$ basis point= "an 01". The following little program does the job, using $\mathrm{h}=.01 \%$. It requires $\mathrm{P}(\mathrm{i})$ stored in $\mathrm{R}_{0}, \mathrm{P}(\mathrm{i}+\mathrm{h})$ in R_{1} and $\mathrm{P}(\mathrm{i}-\mathrm{h})$ in R_{2}. Repeating the first example:
g END 10 n 5 i 4 PMT 100 FV PV STO 0 5.01 i PV STO 14.99 i PV STO2
$R / S \rightarrow 7.961514550 \mathrm{X} \geqslant \mathrm{y} \rightarrow 78.29580000$, c.f. 78.29424 , so some significance has been lost, but the results are pretty good! eD is high by .000001 and eC by .002 - on the 12c platinum eC is high by only .00004 .

Keystrokes	Display	Keystrokes	Display	Keystrokes	Display
f P/R		-\%	07- 24	RCL1	15-45
f CLEAR PRGM	00-	STO 1	08-44 1	-	16-30
RCL)	01-45 0	RCL2	09-45 2	5	17-
RCL2	02-45 2	+	10- 40	0	18-
¢\%	03- 24	EEX	11- 26	X	19-20
STO2	04-44 2	6	12- 6	g GTO 00	20-43,33 00
R\	05-33	X	13-20	f P/R	
RCL1	06-45 1	RCL2	14-45 2		

This also works at $\mathrm{i}=0!!0 \mathrm{i}$ PV STO 0.01 i PV STO 1.01 CHS i PV STO $2 \mathrm{R} / \mathrm{S} \rightarrow$ $7.75 x \geqslant y \rightarrow 77.0$, both exactly correct! To verify the 77 , remember $\mathrm{eC}=\mathrm{C}+\mathrm{D}$ for $\mathrm{i}=0$ and here, using the formula given earlier: $C=n^{2}(1+g(n+1)(2 n+1) / 6 / n) /(1+g \cdot n)$ $=100 *(1+.1 * 11 * 21 / 6 / 10) /(1+.1 * 10)=69.25$. On the 12 cp we get the same convexity but the duration shows as 7.750001450 - that " 145 " is a trace of the Butterfly (B above). The Ant (A) has got lost in the machine :-)

Bond Interface for Taylor ...

The following addition to the above gives us a full interface with the built-in bond application. At the end, the settlement date is in R_{3} and the maturity date in R_{4}. Note how these dates are preserved in the stack, enabling re-runs for different prices. Instead of pressing f PRICE just press g GTO 21 R/S as shown in this re-run of our bond example: 8.25 i 6.75 PMT g M.DY 4.281982 ENTER $6.041996 \quad \mathrm{gTO} 21$ R/S $\rightarrow 8.342874930$ $x \geqslant y \rightarrow 98.18330000$. eD is high by .000002 and eC by .002 (on 12 cp by .0001).
The dollar value of 1BP changes can be recovered as follows:
$\mathrm{DV}+01: \mathrm{RCL} 0 \mathrm{RCL} 1 \% \rightarrow-.075301, \mathrm{DV}-01: \mathrm{RCL} 0 \mathrm{RCL} 2 \% \rightarrow+.075389$, and RCL 0 $\rightarrow 90.31067$, the correct dirty price, and $\mathrm{RCL} \mathrm{PV} \rightarrow 87.62180$, the clean price.

Keystrokes	Display	Keystrokes	Display	Keystrokes	Display
RCL i	21-45 12	+	32-40	i	43-12
STO 3	22-44 3	STO 1	33-44 1	R \downarrow	44-33
STO4	23-44 4	R \downarrow	34-33	f PRICE	45-42 21
EEX	24-26	RCL 3	35-45 3	+	46-40
2	25- 2	i	36-12	STO 0	47-44 0
CHS	26-16	R \downarrow	37-33	R \downarrow	48-33
STO -3	27-4430 3	f PRICE	38-42 21	STO4	49-44 4
+	28-40	+	39-40	R \downarrow	50-33
i	29-12	STO2	40-44 2	STO 3	51-44 3
R \downarrow	30- 33	R \downarrow	41-33	g GTO 01	52-43,33
f PRICE	31-42 21	RCL 4	42-45 4	f P/R	

The one problem with this is that it takes about 25 seconds to run. eD is pretty accurate but eC doesn't fare so well. But it is a surprisingly good practical solution!
Speed isn't a problem on the 12 cp . As noted, the first two programs require modification to run on the newer 12 cp . Each FV PV sequence needs to be $\mathrm{FV} \mathrm{R} \downarrow \mathrm{PV} \mathrm{PV}$.
Still room for a further hint on the previous challenge:
Hint3: $v \cdot a 2=v^{2}+4 v^{3}+9 \mathrm{v}^{4}+\ldots+\mathrm{n}^{2} \cdot \mathrm{v}^{\mathrm{n}+1}$, so $\mathrm{a} 2-\mathrm{v} \cdot \mathrm{a} 2=\mathrm{a} 2 \cdot(1-\mathrm{v})=\mathrm{a} 2 \cdot \mathrm{i} /(1+\mathrm{i})=\mathrm{v}+3 \mathrm{v}^{2}+5 \mathrm{v}^{3}+$ $\ldots+(2 n-1) v^{n}-n^{2} \cdot v^{n+1}=2 a 1-a_{n}-n^{2} \cdot v^{n+1}$. We are now well on the way. The resulting formulae, written using the classic HP TVM notation are really quite simple. For example, compare them with the closed formulae you'll find by googling "closed duration wikipedia" and "closed convexity wikipedia":-)

