## Bonds Galore on the HP-12C

## Tony Hutchins, \#1049

Can we fit a "universal bond" program into the 12 C ? We want to reproduce the built-in YTM and PRICE - which do the standard "A/A SEMIANNUAL" bond. Also we should be able to do the 3 other types found on the 17BII: "30/360 SEMIANNUAL", "30/360 ANNUAL" and "A/A ANNUAL". Here 30/360 is 30(A)/360 (DatafileV25N2P9). Also Price and Yield to CALL should be easily accomplished, as on the 17BII (and 19BII, and probably on the 17BII+). Also we should be able to do zero-coupon bonds, and lastly we can even add special cases that use simple interest discounting - for example German Moosmüller bonds - this cannot be done on the 17BII. Finally of course we should be able to handle a monthly or quarterly coupon as well, and we don't want to be inputting the coupon dates (too easy). Can all this be done on the 12C? Well, yes, but only for British date format: D.MY. Using M.DY would add at least 20 lines - and make the program impossible to fit. A nice challenge would be to prove me wrong there :-)
The program sets up n, PMT (BEG mode) and FV and calculates the accrued interest (ACCRU). Once we have the output we just use TVM. You are the buyer. What you pay (-PRICE) is negative. PRICE+ACCRU=dirty price=dprice.

|  | Input | Comment |  | Output | Comment |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{R}_{3}$ | \#Coupons p.a. | $1,2,3,4,6,12$ | n | term | $\mathrm{n} / \mathrm{R}_{3}$ years |
| $\mathrm{R}_{4}$ | Coupon p.a. | $>=0$ | PMT | $\mathrm{R}_{4} / \mathrm{R}_{3}$ | coupon payment |
| $\mathrm{R}_{5}$ | CALL | $>0$ | FV | $\mathrm{R}_{5}+$ PMT | Final payment |
| $\mathrm{R}_{6}$ | day basis | $0=30 / 360,1=\mathrm{A} / \mathrm{A}$ | $\mathrm{R}_{0}$ | ACCRU | $<=0$. |
| $\mathrm{R}_{7}$ | SETT | DD.MMYYYY | $\mathrm{R}_{1}$ | LCD | DD.MMYYYY |
| $\mathrm{R}_{8}$ | MAT | DD.MMYYYY | $\mathrm{R}_{2}$ | NCD | DD.MMYYYY |

SETT=Settlement date, MAT=Maturity Date, LCD(NCD)=Last (Next) Coupon Date. The general method is to set up the 6 inputs, $g$ D.MY and R/S. Then, for a cum-div bond, set ' $\mathrm{C}^{\prime}$ and:
YTM\% RCL $3 \div \mathrm{i} \rightarrow \mathrm{PV} \rightarrow$-dprice $\mathrm{RCL} 0 \rightarrow$-PRICE, or
PRICE CHS RCL $0 \rightarrow \rightarrow$-dprice $\mathrm{PV} \mathrm{i} R \mathrm{RCL} 3 \mathrm{X} \rightarrow$ YTM $\%$
For an ex-div bond:

## $g$ END RCL 5 FV RCL PMT RCL $0 \rightarrow$ STO 0

Then proceed exactly as for a cum-div bond.
For simple interest discounting over FRACT(term) use STO EEX to clear ' ${ }^{\prime}$ '.
If you get Error 8 while running the program, press $f$ and examine the date shown. It will be either invalid (e.g. 31.06YYYY) or valid. If it is valid then $R \downarrow$ will show an invalid date. You must correct the invalid date (e.g. $1 \square$ ) and resume the program. Before resuming do one $g$ BST if no $R \downarrow$ was required, otherwise do two $g$ BST, before pressing R/S.

| Keystrokes | Display |  | Keystrokes | Display |  | Keystrokes | Display |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| f P/R |  |  | RCL n | 27-45 | 11 | RCL 1 | 55-45 1 |
| f CLEAR PRGM | 00- |  | RCL 3 | 28-45 | 3 | CHS | 56-16 |
| 9 BEG | 01-43 | 7 | $\div$ | 29- | 10 | 9 DATE | 57-4316 |
| RCL 5 | 02-45 | 5 | 3 | 30- | 3 | g FRAC | 58-43 24 |
| RCL 4 | 03-45 | 4 | 6 | 31- | 6 | RCL 8 | 59-45 |
| RCL 3 | 04-45 | 3 | 5 | 32- | 5 | g INTG | 60-43 25 |
| $\div$ | 05- | 10 | - | 33- | 48 | + | 61- 40 |
| PMT | 06- | 14 | 2 | $34-$ | 2 | STO 1 LCD | 62-44 1 |
| + | 07- | 40 | 5 | 35- | 5 | RCL 2 | 63-45 2 |
| FV | 08- | 15 | X | 36- | 20 | g $\triangle$ DYS | 64-43 26 |
| RCL7 | 09-45 | 7 | g INTG | 37-43 | 25 | RCL 6 | 65-45 6 |
| RCL 8 | 10-45 | 8 | CHS | 38- | 16 | X | 66- 20 |
| g $\triangle$ DYS | 11-43 | 26 | 9 DATE | 39-43 | 16 | g $\mathrm{x}=0$ | 67-43 35 |
| R $\downarrow$ | 12 - | 33 | g FRAC | 40-43 | 24 | + | 68-40 |
| 3 | 13- | 3 | RCL 8 | 41-45 | 8 | STO $\div 0$ | 69-44100 |
| 6 | 14- | 6 | g INTG | 42-43 | 25 | RCL $n$ | 70-45 11 |
| 0 | 15- | 0 | + | 43- | 40 | RCL 0 | 71-45 |
| RCL 3 | 16-45 | 3 | STO2 NCD | 44-44 | 2 | + | 72- 40 |
| $\div$ | 17- | 10 | g $\triangle$ DYS | 45-43 | 26 | n term | 73-11 |
| STO 1 | 18-44 | 1 | RCL 6 | 46-45 | 6 | RCL PMT | 74-45 14 |
| $\div$ | 19- | 10 | X | 47- | 20 | g LSTX | 75-43 36 |
| g INTG | 20-43 | 25 | g $x=0$ | 48-43 | 35 | 1 | 76-1 |
| n INT(term) | 21- | 11 | + | 49- | 40 | - | 77-30 |
| RCL 7 | 22-45 | 7 | STO 0 | 50-44 | 0 | X | 78- 20 |
| RCL 8 | 23-45 | 8 | RCL 2 | 51-45 | 2 | STO 0 accru | 79-44 |
| $g$ FRAC | 24-43 2 | 24 | g FRAC | 52-43 | 24 | g GTO 00 | 80-43,33 00 |
| 9 | 25- | 9 | 9 | 53- | 9 | $f$ P/R |  |
| + | 26-40 | 40 | + | 54- | 40 |  |  |

Summary of common settings. Example from the 12 C Manual, page 76/78.

| Bond Type | $\mathbf{R}_{\mathbf{3}}$ | $\mathbf{R}_{\mathbf{6}}$ |
| :--- | :--- | :--- |
| 30(A)/360 ANNUAL | 1 | 0 |
| A/A ANNUAL | 1 | 1 |
| 30(A)/360 SEMIANNUAL | 2 | 0 |
| A/A SEMIANNUAL | 2 | 1 |


| g D.MY | 2 STO 36.75 STO |  |
| :---: | :---: | :---: |
| STO | 28.041982 STO7 |  |
| R/S $\rightarrow-2.688874$ (ACCRU). STO EEX to set |  |  |
| 'C' 8.25 |  | $\mathrm{i} P \mathrm{PV} \rightarrow-90.31$ |
| dprice) | RCL $0-$ | (-PRICE) |

Interesting info not provided in built-in YTM
or PRICE: RCL $1 \rightarrow 4.121981$ (LCD), $\quad$ RCL $2 \rightarrow 4.061982$ (NCD) and $R C L \cap R C L 3 \rightarrow 14.101648$ (term in years).
For PRICE $=88.375$ what is the YTM\%? No need to re-run as inputs are unchanged, just: $88.375 \mathrm{CHS} \mathrm{RCL} 0 \rightarrow \rightarrow-91.06$ (-dprice) $\mathrm{PV} \mathrm{i} \mathrm{RCL} 3 \rightarrow 8.15$ (YTM\%).

