Investment Performance on the HP-12C

Tony Hutchins, \#1049

Peter O. Dietz was an American investment analyst who wrote a book in 1966 about the investment performance of pension funds. He died in 1990 and since then his name has been associated with performance measures. In June 2006 www.hpmuseum.org was asked for a "Modified Dietz" program for the 12C. That is what lines 1-38 do below. For single modified Dietz returns it could finish at line $\mathbf{3 0}$ (see Appendix). For $\mathrm{n}=0$ or 1 lines $39-61$ do the so-called pure "time weighted" rate of return ($\boldsymbol{T W R R}$), which does not involve any explicit time input at all. It does however require a market valuation just before $(\mathrm{n}=0)$ or just after $(\mathrm{n}=1)$ each and every cashflow point. For $\mathrm{n}=.5$, the same lines do the "midpoint Dietz" method, also called the "original Dietz" method which is none other than the old "200I/(A+B-I)" method (see Datafile V24N5P33). The first 17 lines create a (daily product)/100 in R_{2} - this could be used to calculate the interest amount charged on a bank loan: e.g. the interest may be $\mathrm{i} \% / 365{ }^{*} \mathrm{R}_{2}(\mathrm{RCL} \mathrm{i} \boxed{\mathrm{RCL}} 2 \times \mathrm{X} 365 \div$) or, input the interest amount and RCL2 $\div 365 \times$ to calculate an i\% p.a. The sign convention here is that deposits are positive, and withdrawals negative.

Keystrokes	Display	Keystrokes	Display	Keystrokes	Display
f P/R		STO +3	21-44 403	RCL n	43-45 11
f CLEAR PRGM	00-	g GT0 06	22-43,33 06	X	44- 20
RCL) 0	01-45 0	R/S	23-31	-	45-30
0	02- 0	RCL3	24-45 3	RCL FV	46-45 15
STO 1	03-44 1	-	25- 30	9 LSTX	47-43 36
STO 2	04-44 2	STO +3	26-4440 3	-	48-30
9 DATE	05-4316	RCL2	27-45 2	$\Delta \%$	49- 24
R/S	06-31	\div	28-10	R/S	50-31
0	07- 0	RCL1	29-45 1	RCL i	51-45 12
9 DATE	08-43 16	X	30- 20	\%	52- 25
RCL) 0	09-45 0	R/S	31- 31	g LSTX	53-43 36
X 2 y	10-34	RCL i	32-45 12	+	54-40
STO 0	11-44 0	\%	33- 25	+	55-40
g \triangle DYS	12-43 26	g LSTX	34-43 36	i	56-12
9 PSE	13-43 31	$+$	35-40	RCL FV	57-45 15
STO +1	14-44 401	+	36-40	PV	58-13
RCL3	15-45 3	i	37-12	RCL i	59-45 12
\%	16- 25	g GTO00	38-43,33 00	R/S	60- 31
STO +2	17-4440 2	RCL PV	39-45 13	g GTO 39	61-43,33 39
R/S	18-31	RCL PMT	40-45 14	f P/R	
9 $\mathrm{x}=0$	19-43 35	+	41- 40	This should also work on a 12cp in RPN mode.	
9 GTO 23	20-43,33 23	9 LSTX	42-43 36		

In the following example data columns (3) and (5) show the less detailed data used in some methods. Fund managers cannot always provide the detail in column (4).

Date (D.MY) (1)	Cashflow (2)	MarketValue (3)	MarketValue (4)	Cashflow (5)
31.122005	0	1,000	1,000	
15.012006	100			
15.022006	150			
15.032006	200		1,120	450
31.032006	0	1,600	1,600	
15.042006	100		1,650	
15.052006	150		1,800	450
15.062006	200		1,900	
30.062006	0	2,000	2,000	

Market values here exclude cashflow on the same date so $\mathrm{n}=0$ for the pure TWRR.

Program	Start Line	Data Cols.	Initialization. 0		
Modified Dietz	0	1,2 and 3	31.122005 STO 0	1000	TO 3 R/S
Pure TWRR	39	2 and 4	0 n 1000 PV	0 PMT	1010 FV
Midpoint Dietz	39	3 and 5	0.5 n 1000 PV	450 PMT	1600 FV

Modified Dietz: $\mathrm{R}_{1}=$ accumulated days, $\mathrm{R}_{3}=$ balance. At an interest calculation point use a zero cashflow and input the market value at the next R / S. At the start of each new period the extra R/S is required for initialisation. As a check, pauses show the day of the week for each date, and the days between dates. Bad date input R/S can be undone with g GTO 07, input previous date R/S g GTO 07.

Modified Dietz. g D.MY 0 i (f PRGM	Pure TWRR 0 n 0
31.122005 STO 01000 STO 3 R/S $\rightarrow 31.12$	1000 PV 0 PMT 1010 FV
$15.012006 \mathrm{R} / \mathrm{S} \rightarrow 150.00100 \mathrm{R} / \mathrm{S} \rightarrow 100.00$	g GTO $39 \mathrm{R} / \mathrm{S} \rightarrow 1.00 \mathrm{R} / \mathrm{S}$
$15.022006 \mathrm{R} / \mathrm{S} \rightarrow 341.00150 \mathrm{R} / \mathrm{S} \rightarrow 150.00$	100 PMT 1120 FV R/S $\rightarrow 0.90$ R/S $\rightarrow 1.91$
$15.032006 \mathrm{R} / \mathrm{S} \rightarrow 350.00200 \mathrm{R} / \mathrm{S} \rightarrow 200.00$	150 PMT 1300 FV R/S $\rightarrow 2.36$ R/S $\rightarrow 4.32$
$31.032006 \mathrm{R} / \mathrm{S} \rightarrow 232.00$ 0 R/S $\rightarrow 0.00$	200 PMT $1600 \mathrm{FV} \mathrm{R} / \mathrm{S} \rightarrow 6.67 \mathrm{R} / \mathrm{S} \rightarrow 11.2$
$1600 \mathrm{R} / \mathrm{S} \rightarrow \mathbf{1 2 . 5 8} \mathrm{R} / \mathrm{S} \rightarrow 12.58 \mathrm{R} / \mathrm{S} \rightarrow 31.03$	0 PMT 1650 FV R/S $\rightarrow 3.13$ R/S $\rightarrow 14.75$
$15.042006 \mathrm{R} / \mathrm{S} \rightarrow 240.00100 \mathrm{R} / \mathrm{S} \rightarrow 100.00$	100 PMT $1800 \mathrm{FV} \mathrm{R} / \mathrm{S} \rightarrow 2.86 \mathrm{R} / \mathrm{S} \rightarrow 18.03$
$15.052006 \mathrm{R} / \mathrm{S} \rightarrow 510.00150 \mathrm{R} / \mathrm{S} \rightarrow 150.00$	$150 \mathrm{PMT} 1900 \mathrm{FV} \mathrm{R} / \mathrm{S} \rightarrow-2.56 \mathrm{R} / \mathrm{S} \rightarrow 15.00$
15.062006 R/S $\rightarrow 573.50200 \mathrm{R} / \mathrm{S} \rightarrow 200.00$	$200 \mathrm{PMT} 2000 \mathrm{FV} \mathrm{R} / \mathrm{S} \rightarrow-4.76 \mathrm{R} / \mathrm{S} \rightarrow 9.52$
$30.062006 \mathrm{R} / \mathrm{S} \rightarrow 307.500 \mathrm{R} / \mathrm{S} \rightarrow 0.00$	
$2000 \mathrm{R} / \mathrm{S} \rightarrow-2.79 \mathrm{R} / \mathrm{S} \rightarrow 9.44$	urns) vary slighty for each method.

Midpoint Dietz: 0.5 n 0 i 1000 PV 450 PMT 1600 FV g GTO $39 \mathrm{R} / \mathrm{S} \rightarrow \mathbf{1 2 . 2 4}$ $\mathrm{R} / \mathrm{S} \rightarrow$ 12.24. 450 PMT 2000 FV R/S $\rightarrow-2.74 \mathrm{R} / \mathrm{S} \rightarrow \mathbf{9 . 1 7}$. Quick! Linking the Dietz MWRR (money weighted rates of return) creates a pseudo TWRR only. Pure TWRR is the ideal as it is a market like return on a single lump sum, and is perfect for comparison with market indices, which were pioneered as performance
benchmarks by Frank Russell, which was where Peter Dietz was working when he wrote his book. An investor's individual return also depends on cashflow timing which is precisely what the pure TWRR excludes.
What in investor wants to know is the IRR on his account as this can be compared with an alternative savings account return. Fund managers attempt to calculate a TWRR but GIPS (Global Investment Performance Standards) strangely still allows the Dietz MWRR to be linked to make a hybrid MW/TWRR. At the investor level however, the Dietz MWRR is a fairly reliable guess of the IRR - providing the fund does not more than say double or halve in size. The first 12 lines of the following code do a simple Dietz for $\mathrm{n}=.5 \mathrm{n}$ is the fraction of the period when the cashflow is deemed to occur. E.g. .5 $\mathrm{n} 10000 \mathrm{PV} 12000 \mathrm{FV} 1500 \mathrm{PMT} \mathrm{R} / \mathrm{S}$ $\rightarrow 4.65 \%$. $\mathrm{n}=0$ corresponds to cashflow at the beginning of the period, and $\mathrm{n}=1$ at the end. $0 \square R / S \rightarrow 4.35 \%, 1 \square R / S \rightarrow 5.00 \%$. Actually this shows us another way - just use TVM, twice: 1 n 12000 CHS $F \mathrm{FV}$ BEG $\mathrm{i} \rightarrow 4.35 \mathrm{~g}$ END $\mathrm{i} \rightarrow 5.00$ $\pm 2 \div \rightarrow 4.67$. This is close enough to the 4.65. 4.65 is theoretically the harmonic mean of the 5.00 and 4.35 . These 8 lines convert X and Y to their harmonic mean in X and the arithmetic mean in $Y: \% \quad x \geqslant y \quad g$ LSTX $+\square \quad x \geqslant y$ \%T. This way we see the range of returns (extreme "time weighted" returns) as well as the harmonic midpoint return. We have rhythm and harmony :-)

Keystrokes	Display	Keystrokes	Display	Keystrokes	Display
f P/R		RCL i	13-45 12	RCL PMT	27-45 14
f CLEAR PRGM	00-	RCL PMT	14-45 14	RCL n	28-45 11
RCL PV	01-45 13	X	15-20	X	29- 20
RCL PMT	02-45 14	g LSTx	16-43 36	-	$30-30$
+	03-40	RCL PV	17-45 13	g LSTX	31-43 36
RCL n	04-45 11	+	18-40	X 2 y	32- 34
g LSTx	05-43 36	RCL i	19-45 12	RCL PV	33-45 13
X	06- 20	\%	20- 25	+	34-40
-	07-30	+	21- 40	RCL i	35-45 12
RCL FV	08-45 15	RCL FV	22-45 15	\%	36- 25
g LSTX	09-43 36	-	23-30	+	37- 40
-	10-30	\%T	24- 23	+	38-40
$\Delta \%$	11- 24	g GTO 00	25-43,33 00	g GTO 00	39-43,3300
g GTO 00	12-43,33 00	RCL PMT	26-45 14	f P/R	

Sign conventions: PMT you deposit is positive. PV is positive (considered a deposit). FV is also positive here - but negative if TVM or IRR used directly.
$1+\mathrm{i}=(\mathrm{FV}-\mathrm{f} * \mathrm{PMT}) /(\mathrm{PV}+(1-\mathrm{f}) * \mathrm{PMT})$, where f is the fraction in n . Only the first 12 lines are really necessary but it can be useful to resolve for f or FV:
$\mathrm{f}=\left((\mathrm{PV}+\mathrm{PMT})^{*}(1+\mathrm{i})-\mathrm{FV}\right) / \mathrm{i} / \mathrm{PMT}$ solves for f, g GTO $13 \mathrm{R} / \mathrm{S}$
$\mathrm{FV}=(\mathrm{PV}+(1-\mathrm{f}) * \mathrm{PMT}) *(1+\mathrm{i})+\mathrm{f}^{*}$ PMT solves for FV, g GTO $26 \mathrm{R} / \mathrm{S}$
If f is not a positive fraction then something is wrong with the input. Finally:
$\mathrm{PV}=(\mathrm{FV}-\mathrm{PMT}(1+(1-\mathrm{f}) * \mathrm{i})) /(1+\mathrm{i}) \& \mathrm{PMT}=\left(\mathrm{FV}-\mathrm{PV}^{*}(1+\mathrm{i})\right) /(1+(1-\mathrm{f}) * \mathrm{i})$.

Appendix: Two Modified Dietz Programs.

Date	Balance	Date	Deposit	Date	Withdl.	Date
12.312004	$\$ 10,000$	3.312005	$\$ 1,000$	6.302005	$-\$ 500$	Deposit
12.312005	$\$ 12,000$	From www.usatoday.com "Ask Matt" money column (Feb.06)				

The source of the above example is accompanied by a 12C IRR calculation.

First program

Works for any number of cashflows (the example above has only 3). The weekday is shown for each date - a 6 or 7 means a weekend (e.g. 12.312005), which would generally be suspect. Also the days traversed in each period are shown - see the example below. Bad date input, R/S can be immediately undone with gGo 9 , input previous date R/S g GTO 07, and now input the correct date and R/S.
Cash flows can be input out of order, however the display is more meaningful if they are input in strict order. The last date must however be input last (along with the zero cash flow signifying, to the program $<\mathrm{G}>$, it is the last date). Here the final value is stored in FV as part of the initialisation.

Keystrokes	Display	Keystrokes	Display	Keystrokes	Display
f P/R		$x \geqslant y$	10- 34	STO + 3	21-44 403
f CLEAR PRGM	00-	STO 0	11-44 0	g GTO 06	22-43,33 06
RCL 0	01-45 0	g \triangle DYS	12-43 26	RCL FV	23-45 15
0	02- 0	9 PSE	13-43 31	RCL 3	24-45 3
STO 1	03-44 1	STO + 1	14-4440 1	-	25-30
STO 2	04-44 2	RCL 3	15-45 3	RCL 2	26-45 2
g DATE	05-4316	\%	16- 25	\div	27-10
R/S	06-31	STO +2	17-44 402	RCL 1	28-45 1
0	07- 0	R/S	18-31	\times	29- 20
9 DATE	08-43 16	g x=0	19-43 35	g GTO 00	30-43,33 00
RCL)	09-45 0	g GTO 23	20-43,33 23	f P/R	

Items in quotes are displayed momentarily.

f PRGM g M.DY 12.312004 STO		STO 3	FV R/S \rightarrow "12,31,2004 5"
3.312005R/S \rightarrow "3,31,20054"	"90"	9,000.00	1000 R/S $\rightarrow 1,000.00$
$6.302005 \mathrm{R} / \mathrm{S} \rightarrow$ "6,30,20054"	"91"	10,010.00	500 CHS R/S $\rightarrow-500.00$
$9.302005 \mathrm{R} / \mathrm{S} \rightarrow$ "9,30,2005 5"	"92"	9,660.00	1000 R/S $\rightarrow 1,000.00$
12.312005 R/S \rightarrow "12,31,2005 6"	"92"	10,580.00	0 R/S $\rightarrow 4.649682$ (ans)
Total days \rightarrow	365	39,250.00	\leftarrow total interest at 1\%/day

Only 4 numbered registers are used, and one financial register ($/ \mathrm{FV}$).
RCL $0 \rightarrow 12.312005$, the final date. RCL $1 \rightarrow 365$, total of days traversed.
RCL $2 \rightarrow 39,250.00$ total of daily products (interest at the high rate of 1% per day).
RCL $3 \rightarrow 11,500.00$ the initial balance plus the total of the cash flows.
To get ready for the next period, first we could store the answer in i, and then: RCL FV STO 3, input new final value $\mathrm{FV} \mathrm{R} / \mathrm{S} \rightarrow$ " $12,31,20056^{\prime \prime}$, and away we go.

Second program

All data is pre-stored and the number of cash flows is limited. On the 12C the 41 line program means 15 registers are free (refer Datafile V23N2pp9-10). Data for 7 dates can be stored (dates in $\mathrm{R}_{0}, \mathrm{R}_{2}, \ldots \mathrm{R}_{.2}$, corresponding amounts in $\mathrm{R}_{1}, \mathrm{R}_{3}, \ldots, \mathrm{R}_{3}=0$) so we have room for 5 cash flows besides the opening and closing balances. A 99 line program would leave room for just one cash flow. The stored data is not changed so error correction is easy - just change the stored data and re-run.

Keystrokes	Display	Keystrokes	Display	Keystrokes	Display
f P/R		x 2 y	14-34	+	29-40
f CLEAR PRGM	0-	g \triangle DYS	15-43 26	PMT	30- 14
CLX	01- 35	RCL PMT	16-45 14	g GTO 06	31-43,33 06
PV	02-13	\%	17- 25	RCL)	32-45
STO n	03-44 11	RCL PV	18-45 13	RCL g CFj	33-45,4314
RCL 1	04-45 1	+	19-40	g \triangle DYS	34-43 26
PMT	05-14	PV	20-13	RCL FV	35-45 15
RCL n	06-45 11	RCL n	21-45 11	RCL PMT	36-45 14
2	07- 2	4	22- 4	-	37- 30
+	08-40	+	23-40	X	38- 20
n	09-11	n	24-11	RCL PV	39-45 13
RCL g CFi	10-45,43 14	RCL 9 CFi	25-45,4314	\div	40-10
RCL $\mathrm{g}^{\text {CFFj }}$	11-45,43 14	g $\mathrm{x}=0$	26-43 35	9 GTO 00	41-43,33 00
R \downarrow	12-33	g GTO 32	27-43,33 32	f P/R	
RCL 9 CFi	13-45,4314	RCL PMT	28-45 14		

The example can be done as follows: f PRGM g M.DY

12.312004 g CF0	10000 g	CFi	3.312005 g	CFi	1000 g	CFi	
6.302005 g CFi	500 CHS 9	CFi	9.302005 g	CFj	1000 g	CFi	
12.312005 g CFi	0 g C	CFi	12000 FV R/S $\rightarrow 4.649682$ (ans)				

The "running" time here is 22 seconds on the 12 C and only 4 seconds on the new 12cp! Total days are not stored. PV holds the daily product and PMT holds the accumulated balance. n is used to access the data. i is kept free. 3 lines could be added to show progress:0 9 DATE after line 10, and 9 PSE after line 15 . As before the last "cashflow" is input as zero to signal that the date is the last date and the final value is stored in FV. On the first 12cp (with under 240 program lines) we could store 13 cashflows for the period - on the new 12 cp we can store 38 useful for checking the monthly interest rate on a revolving mortgage which doubles as a cheque account, after a busy month. Cashflows on the same day can be aggregated or input separately with the same date. At last we have found a great application for the new 12cp! So, the above applies equally to a loan or a savings account where simple interest is used to calculate interest at each compounding point. The modern "Modified Dietz" is just a simple interest rate calculation, something bankers have been doing for centuries! Such is the mystique of finance, knowing all 13 names for each process (after John Ball).

Second program plus daily IRR calculation for 12c platinum.

Matt Krantz had the great idea of making the 12C do the daily IRR, in addition to the daily simple return. The second program has been modified to store the daily simple return (in PV) and the total days (in PMT). For IRR the data must be in strict date order, with no duplicate dates - payments on the same day must be pre-totalled. If there are more than 99 days without a cashflow then a dummy tiny cashflow of E-99 (i.e. EEX 99 CHS) should be input to keep the sub periods under 100 days. Start with f CLEAR REG and after finding the simple return as before: just g GTO 048 R/S $\rightarrow 0.012459$ (IRR). The original data is now all overwritten! The effective rate for the period is: 1 RCL i \% + RCL PMT $y^{x} 1 \times \geqslant y ~ \Delta \% \rightarrow 4.652143 \%$.

Keystrokes	Display	Keystrokes	Display	Keystrokes	Display
f P/R		RCL 9 CFi	028,45,43 14	RCL 9 CFi	057,45,43 14
f CLEAR PRGM	000,	g $\mathrm{x}=0$	029,43 35	RCL 9 CFi	058,45,43 14
CLX	001, 35	g GTO 035	030,43,33,035	$\mathrm{x} \geqslant \mathrm{y}$	059, 34
PV	002, 13	RCL PMT	031,45 14	RCL 9 CFj	060,45,43 14
STO n	003,44 11	+	032, 40	X 2 y	061, 34
RCL	004,45	PMT	033, 14	g \triangle DYS	062,43 26
PMT	005, 14	g GTO 006	034,43,33,006	X 2 y	063, 34
RCL n	006,45 11	RCL 0	035,45 0	R \downarrow	064, 33
2	007,	RCL 9 CFi	036,45,43 14	X 2 y	065, 34
+	008, 40	g \triangle DYS	037,43 26	g CFi	066,43 14
n	009, 11	RCL FV	038,45 15	CLX	067, 35
RCL g CFi	010,45,43 14	RCL PMT	039,45 14	$\mathrm{g} \mathrm{CFj}_{\mathrm{j}}$	068,43 14
0	011,	-	040, 30	R \downarrow	069, 33
g DATE	012,43 16	RCL PV	041,45 13	1	070, 1
RCL g CFi	013,45,43 14	\div	042, 10	-	071, 30
R \downarrow	014, 33	PV	043, 13	g Ni	072,43 15
RCL g CFi	015,45,43 14	XZ ${ }^{\text {d }}$	044, 34	RCL n	073,45 11
$\mathrm{X} \geqslant \mathrm{y}$	016, 34	PMT	045, 14	2	074, 2
g \triangle DYS	017,43 26	X	046, 20	+	075, 40
9 PSE	018,43 31	g GTO 000	047,43,33,000	n	076, 11
RCL PMT	019,45 14	1	048,	g GTO 050	077,43,33,050
\%	020, 25	n	049, 11	RCL 9 CFi	078,45,43 14
RCL PV	021,45 13	RCL 9 CFi	050,45,4314	RCL FV	079,45 15
+	022, 40	g $\mathrm{x}=0$	051,43 35	CHS	080, 16
PV	023, 13	g GTO 078	052,43,33,078	g CFi	081,43 14
RCL n	024,45 11	RCL n	053,45 11	RCL PV	082,45 13
4	025, 4	2	054,	RCL g R/S	083,45,43 31
+	026, 40	+	055, 40	g GTO 000	084,43,33,000
n	027, 11	n	056, 11	f P/R	The End.

RCL PV (0.012739) RCL PMT $X \rightarrow 4.649682 \%$ recovers the original simple return. This program, with up to 38 cashflows is an ideal use for the new 12CPA.

Daily IRR calculation for the HP-12C.

We adopt a different paradigm - converting the timed cashflows directly into the IRR format with a program - lines 1-21 below. The FV is now considered as a withdrawal, signwise. Nice and short! It runs like this: f PRGM g M.DY

C.Flow		Date		Date with DOW	days	IRR n
12000	ENTER	12.312004	R/S \rightarrow			0.00
1000	ENTER	3.312005	R/S \rightarrow	"3,31,2005 4"	"90"	2.00
500 CHS	ENTER	6.302005	R/S \rightarrow	"6,30,2005 4"	"91"	4.00
1000	ENTER	9.302005	R/S \rightarrow	"9,30,2005 5"	"92"	6.00
12000 CHS	ENTER	12.312005	R/S \rightarrow	"12,31,2005 6"	"92"	8.00

f IRR $\rightarrow 0.012459(25 \mathrm{sec}$. on $12 \mathrm{C}, 4 \mathrm{sec}$. on new 12 cpt - but on the new 12 cpt we need to either clear regs before starting or add 2 more lines to ensure $\mathrm{Nj}=1$ when amounts are stored.) RCL PV RCL PMT $9 \triangle \operatorname{DVS}$ PMT $\rightarrow 365$, and as before, 1 RCL i $\% \rightarrow$ RCL PMT $y^{x} 1 \times \geqslant y \Delta \% \rightarrow 4.652143 \%$. If there are more than 99 days without a cashflow then a zero cashflow can now be used. The dates are lost, converted to zero CFj with Nj in days, but we can still extract the modified Dietz directly from the IRR data with: g GTO 22 R/S $\rightarrow .012739$ and RCL PMT $X \rightarrow 4.649682 \%$ recovers the original simple return. This program can be enhanced to cope with repeating non-zero cashflows by inserting 8 lines after line 32 (new lines 33-40): g LSTX $x \quad g$ LSTX $+2 \div+ \pm$, adding $\mathrm{Nj}(\mathrm{Nj}+1) / 2$ to the previous PMT (a day count), before multiplying by CFj . Our examples don't require the 8 extra as $\mathrm{CFj}=0$ when $\mathrm{Nj}>1$. The final CFj needs to have $\mathrm{Nj}=1$.

Keystrokes	Display	Keystrokes	Display	Keystrokes	Display
f P/R		g Ni	17-43 15	+	35- 40
f ClEAR PRGM	00-	R】	18-33	RCL n	36-45 11
PV	01- 13	R \downarrow	19-33	1	37- 1
STO PMT	02-44 14	$\mathrm{g} \mathrm{CFi}_{\mathrm{j}}$	20-43 14	+	38-40
R】	03- 33	g GTO 05	21-43,33 05	$9 \mathrm{x}=0$	39-43 35
9 CFO	04-43 13	RCL n	22-45 11	g GTO 43	40-43,33 43
RCL n	05-45 11	PV	23-13	R \downarrow	41- 33
R/S	06-31	RCL g CFi	24-45,4314	g GTO 28	42-43,33 28
0	07- 0	CLx	25-35	i	43-12
9 CFj	08-43 14	PMT	26-14	RCL PV	44-45 13
g DATE	09-43 16	ENTER	27-36	n	45-11
RCL PMT	10-45 14	RCL PMT	28-45 14	f NPV	46-42 13
X Y y	11- 34	RCL PMT	29-45 14	CHS	47-16
PMT	12- 14	RCL g N $\mathrm{N}^{\text {d }}$	30-45,4315	\%T	48- 23
$9 \triangle$ DYS	13-43 26	+	31- 40	g GTO00	49-43,3300
9 PSE	14-43 31	PMT	32-14	f P/R	
1	15-1	RCL 9 CFi	33-45,43 14		
\square	16-30	X	34- 20		

It is interesting how this gets a quick initial guess for the IRR. Here is how it looks, stand alone on the HP-12C, with the extra 8 lines. It is only 36 lines, and I found it quite hard to write. There are so few free resources once IRR takes over all numbered registers, including possibly FV, and also uses n. Instead of accumulating the non-final CFj as before (I could have used i for that) I just do an NPV with $\mathrm{i}=0$ to get the interest. PV is needed just to preserve n, and PMT is used to remember the duration backwards from the last $\mathrm{CFj}_{\mathrm{j}}$. The daily product is kept in the stack - at line 9 the stack is full to the brim with essential data! RCL PMT at the end to see the total number of periods involved.

Keystrokes	Display	Keystrokes	Display	Keystrokes	Display
f P/R		g LSTx	12-43 36	+	25-40
f clear PRGM	00-	ENTER	13-36	$9 \mathrm{x}=0$	26-43 35
RCL n	01-45 11	X	14- 20	g GTO 30	27-43,33 30
PV	02-13	g LSTX	15-43 36	R \downarrow	28- 33
RCL g CFi	03-45,4314	+	16-40	g GT007	29-43,33 07
CLx	04-35	2	17- 2	i	30-12
PMT	05-14	\div	18-10	RCL PV	31-45 13
ENTER	06-36	+	19-40	n	32-11
RCL PMT	07-45 14	RCL g CFi	20-45,4314	f NPV	33-42 13
RCL PMT	08-45 14	X	21- 20	CHS	34-16
RCL g Ni	09-45,4315	+	22-40	\%T	35- 23
+	10- 40	RCL n	23-45 11	g GTO 00	36-43,33 00
PMT	11- 14	1	24-1	f P/R	

The results tend to be better with savings cash flows, rather than loans.
Savings example: 10 payments of $\$ 1,000$ accumulate to $\$ 15,000$. What is the IRR? We can do this with TVM: $10 \square 0$ PV 9 BEG 1000 PMT 15000 CHS FV $\rightarrow 7.26$. With IRR: 1000 g CFo 10 g N .15000 CHS GF f IRR $\rightarrow 7.26$. We can also now just press R / S with the above program and get 9.09 in about 4 seconds. The IRR takes about 12 seconds.

Loan example: $\$ 7000$, is repaid by 10 payments of $\$ 1,000$. What is the IRR? With TVM: 10 n 7000 CHS PV g END 1000PMT 0 FV $\rightarrow \rightarrow 7.07$. With IRR: 7000 CHS g CF0 1000 g CFi 9 g 1000 g CFj f IRR $\rightarrow 7.07$. Note how we had to split the final 1000 payment out separately for our program to work. This is its only peculiarity. It targets a single final value. $R / S \rightarrow 12.00$.
Perpetuity example: $\$ 5,000$ is repaid by 10 payments of $\$ 1,000$, plus a final repayment of $\$ 5,000$. We know the answer $<\mathrm{G}>$, but what is the IRR? With TVM: 10 n 5000 CHS PV g END 1000 PMT 5000 FV $\mathrm{i} \rightarrow 20.00$. With IRR: 5000 CHS g CF0 $1000 \mathrm{~g} \mathrm{CFj} 9 \mathrm{~g} \mathrm{~N} 6000 \mathrm{~g} \mathrm{CFj} \mathrm{f} \rightarrow \mathrm{IRR} \rightarrow 20.00$. But $\mathrm{R} / \mathrm{S} \rightarrow 200.00$. This extreme example is designed to show the limitations of the modified Dietz as a general initial guess for i. So, interpret the modified Dietz with great care. It is quite beyond me how the fund manager TWRR "standard" allows the Dietz to be linked to form a pseudo TWRR.

