Solving for unknown CFi using the HP-12C NPV

Tony Hutchins, \#1049
A 3-step method is used, the essentials of which are:

1. Input the complete transaction time-line including known CF_{j}, and with the unknown CF_{j} set to zero. Then $f \mathrm{NPV}$ PMT.
2. Set the unknown $\mathrm{CF}_{\mathrm{j}}=100$ (pro rata if necessary). Then $f \mathrm{NPV}$.
3. Run the following program: RCL PMT RCL PV - RCL PMT \%T g GTO 00.

The unknown CF_{j} is then displayed. Five different types of usage follow:

1. Construction Loan (multiple advance transaction)

$\$ 20,000$ is advanced on the 15 th of April, June and September. This $\$ 60,000$ is to be repaid by 240 monthly instalments, the first due on 15th December. Find the monthly repayment rate assuming 10.25% interest.
f CLEAR REG 10.25 g $12 \div 20000$ g CFo

0 g	CFi			RCL 0 g CFi								CFi	2	g	N	N		RCL	$0 \longdiv { g }$	CFi		
09	CFi	29	Ni	0 g	CFi	80.9	N	Ni				CFi	80	g		Ni		g	CFi	80.9	N	Ni
f ${ }^{\text {N }}$	P P	MT		100	STO 6	6 STO 7	7 S	STO 8		f		NPV	R/S					ee:	-612	2.93		

2. Increasing Annuity (arithmetic progression)

A new business with growth prospects borrows $\$ 30,000$ repayable over 5 years at 15%, and negotiates a scheme of 5 annual repayments increasing by $\$ 3,000$ a year. What is the amount of the first year's repayment?
f CLEAR REG 15 i 30000 CHS g CFo

0 g CFi	3000 ENTER ENTER ENTER g CFi +g CFi					+	g	CFi
+ g CFi	f NPV PMT		100 STO	1 STO	+ 2	STO	+	+3
STO +4	RCL 5 + STO 5		f NPV	R/S		see:	37	781.02

3. Photocopier Lease (Advance Payments with Residual)

Taken from page 176 of the HP-12C Owner's handbook. 4 lease payments made at the outset, then 44 . Term is 48 months with 30% residual. Based on $\$ 22,000$ value the residual is $\$ 6,600$. Find the monthly payment assuming 15% interest. The book uses a 27 line program. Here (and in example 4) the 100 is also applied pro rata.
f CLEAR REG 15 g $12 \div 22000$ CHS g CFo

4. Graduated Payment Mortgage (geometric progression)

Taken from page 35 of the HP-12C Solutions Handbook. $\$ 50,000$ repayable monthly with 5% increases in first 6 years and constant thereafter. 30 year term. 12.5% interest. Find payments for years 1-6 and balances at the end of years 1-5. Book has a 77 line program. The rounding below (in $f 2$) just emulates the book.
f CLEAR REG 12.5 g $12 \div 50000$ CHS g CFO PMT

Then: 0 PMT, RCL 1 f RND STO 1, RCL 2 f RND STO 2, RCL 3 f RND STO 3, RCL 4 R RDSTO 4, and RCL5 5 RND STO 5 sets up data for the balances:

1 n	f	NPV 12	n	FV	see: 50,914.67		n	f	NPV 24	n	FV	see: 51,665.07
3 n	f	NPV 36	n	FV	see: 52,215.34		n	f	NPV 48	I	FV	see: 52,523.85
5 n	f	NPV60	n	FV	see: 52,542.97							

5. Bulldozer Purchase (skipped payments)

Taken from page 39 of the HP-12C Solutions Handbook. \$100,000 repayable over 5 years at 14%. Find monthly repayment. Jan-Mar skipped. Loan drawn in Sept. Book has a complex 10 step keystroke solution, ingenious but challenging to understand, and without the usual practical explanation, which is understandable as the formula used is condensed. This at least sets out a clear time-line:
f CLEAR REG 14 g $12 \div 100000$ CHS g CFO PMT

	0	CFi	3 g	N	09	CFi	3	g	N	0		CFi	99	N	09	CFi	3		
	0 g	CFi	99	N	09	CFi	3	g	N	0		CFi	99	N	0 g	CFi			
	0 g	CFi	9 g	N	0 g	$\mathrm{CFj}_{\mathrm{j}}$	3	9	N	0		CFi	6 g	N	(no need for NPV)				
	100	STO 1	STO		STO	5 STO	7	STO			O.	1 f	NPV	R/S	see:	3119			

Notes

The tables above are intended to be read/actioned across and down, and the first cells up to f NPV PMT or "(no need for PV)" always correspond to sequential storage register content, like so:

Register 1	Register 2	Register 3	Register 4
Register 5	Register 6	\ldots	

100 is used as a basis for the unknown cashflows as it causes sufficient perturbation in the NPV to ensure a solution of adequate accuracy. Note that this technique leaves the known cashflows intact, unless an unknown cashflow has simultaneous incidence (see $2 \& 3$), thus facilitating further variations to be investigated without too much effort. In $4 \& 5 \mathrm{PMT}=\mathrm{CF}_{0}$ as only CF_{0} is known.

